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Key points

� Vascular function and arterial stiffness are important markers of cardiovascular health and
cardiovascular co-morbidity.

� Transitional phases of hypoemia and hypermia, with consequent fluctuations in shear rate,
occuring during repetitive passive stretching adminstration (passive stretching training) may
constitute an effective stimulus to induce an amelioration in vascular function, arterial stiffness
and vascular remodelling by improving central and local blood flow control mechanisms.

� Vascular function, arterial stiffness and vascular remodelling were evaluated before and after
12 weeks of passive stretching training and after 6 weeks from training cessation, in the femoral,
popliteal (treated with stretching), and brachial arteries (untreated) of both sides.

� After passive stretching training, vascular function and arterial remodelling improved, and
arterial stiffness decreased in all the arteries, suggesting modifications of both central and local
blood flow control mechanisms. Passive stretching-induced improvements related to central
mechanisms seemed to have a short duration, as they returned to pre-training baseline within
6 weeks from training cessation, whereas those more related to a local mechanism persisted in
the follow-up.
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Abstract Acute passive stretching (PS) effects on blood flow (Q̇ ), shear rate (Ẏ), and vascular
function in the feeding arteries of the stretched muscle have been extensively investigated;
however, few data are available on vascular adjustments induced by long-term PS training.
We investigated the effects of PS training on vascular function and stiffness of the involved
(femoral and popliteal) and uninvolved (brachial) arteries. Our hypothesis was that PS-induced
changes in Q̇ and Ẏ would improve central and local mechanisms of Q̇ control. Thirty-nine
participants were randomly assigned to bilateral PS (n = 14), monolateral PS (n = 13) or no PS
training (n = 12). Vascular function was measured before and after 12 weeks of knee extensor
and plantar flexor muscles’ PS training by single passive limb movement and flow-mediated
dilatation (FMD). Central (carotid-femoral artery PWV, PWVCF) and peripheral (carotid-radial
artery PWV, PWVCR) arterial stiffness was measured by pulse-wave velocity (PWV), together with
systolic (SBP) and diastolic (DBP) blood pressure. After PS training, increases of 30%, 25% and
8% (P < 0.05) in femoral �Q̇ , popliteal and brachial artery FMD%, respectively, occurred in both
PS training groups. A decrease in PWVCF, PWVCR, SBP and DBP (−25%, −17%, −4% and −8%,
respectively; P < 0.05) was noted. No changes occurred in controls. Vascular function improved
and arterial stiffness reduced in the arteries involved and uninvolved with PS training, suggesting
modifications in both central and local Q̇ control mechanisms. PS-induced improvements had
a short duration in some of vascular function parameters, as they returned to baseline within
6 weeks of PS training cessation.

(Received 23 March 2020; accepted after revision 29 May 2020; first published online 2 July 2020)
Corresponding author Emiliano Cè: Department of Biomedical Sciences for Health (SCIBIS), University of Milan, Via
Colombo 71, 20133 Milan, Italy. Email: emiliano.ce@unimi.it

Introduction

Vascular function (Hotta et al. 2013; Nishiwaki et al.
2015), the ability of an artery to dilate and constrict, is
an important marker of cardiovascular health and cardio-
vascular co-morbidity (Qureshi et al. 2007). Alterations
in vascular function often precede an increase in arterial
stiffness, which is inversely related to cardiovascular
health (Kruse & Scheuermann, 2017). Improving and/or
maintaining vascular function is crucial for the prevention
of cardiovascular disease (Green et al. 2017b).

Blood flow (Q̇ ) distribution throughout body
vasculature is strongly influenced by the balance of
the sympathetic activity (Sandoo et al. 2010; Thijssen
et al. 2014; Venturelli et al. 2019) and localized vaso-
dilator mechanisms (Widlansky et al. 2003; Wilson
et al. 2016). Recent studies have reported that acute
passive static stretching (PS), a well-established practice in
rehabilitation and sport to increase joint range of motion
(ROM) (Esposito et al. 2011; Kay & Blazevich, 2012; Behm
et al. 2015), may have a positive effect on vascular function,
arterial stiffness and arterial structure (Cortez-Cooper
et al. 2008; Kato et al. 2017; Shinno et al. 2017).

Acute PS administration elicits two opposite responses:
vasoconstriction with reduced Q̇ in the feeding artery
of the stretched muscle (Venturelli et al. 2019), which is
triggered by a systemic increase in sympathetic neural
tone (Cui et al. 2006) due to PS-induced stress on muscle
mechano- and metabo-receptors (Venturelli et al. 2017a);
and vasodilatation with subsequent increase in Q̇ in the

feeding artery of the stretched muscle potentially due to
the release of endogenous vasoactive substances, as a result
of the stretch-induced stress on the vessel’s wall that over-
whelms systemic sympathetic vasoconstriction (Venturelli
et al. 2017a, 2019). During multiple stretch-relaxation
cycles, the first acute hyperaemic response to stretching
seems to progressively attenuate until it disappears
during subsequent stretching bouts, possibly due to
the depletion of vasoactive substances (Venturelli et al.
2017a, 2019). Moreover, the relaxation phase in between
two subsequent stretches is always characterized by
hyperaemia due to a reduction in peripheral vascular
resistance after stretch-induced deformation of the
vessel (Venturelli et al. 2019). While the effects of acute
PS on Q̇ , and vascular function and structure in the
feeding arteries of the stretched muscle have been already
extensively investigated, some data are also available on
vascular function and arterial stiffness ameliorations
induced by long-term PS training (Cortez-Cooper et al.
2008; Kato et al. 2017; Shinno et al. 2017). However, the
indirect approach used in the previous studies to assess
vascular function changes after PS training did not permit
evaluation of possible PS training-induced mechanical
remodulations of the arterial wall in the vessels directly
involved in PS training. A plausible explanation for these
phenomena involves the shear rate (Ẏ), which is the
frictional or drag force acting on the vessel’s inner lumen
that can trigger a chain of reactions, leading to higher
endothelial NO synthase activity (Niebauer & Cooke,

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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1996). Continuous, repetitive increases in Ẏ induced by
PS training may indeed act as a sort of ‘vascular training’
leading to endothelial remodelling (i.e. changes in
vascular stiffness and structure), thus improving vascular
function, in a manner similar to skeletal muscle training
(Green et al. 2017a,b; Bisconti et al. 2019). Noticeably,
changes in arterial stiffness may be also attributable, at
least in part, to changes in the structural properties of the
connective tissue. A biomarker to determine changes in
human vascular structure in vivo is the maximal arterial
dilatation capacity (Naylor et al. 2005), which can be
induced by hyperaemia in response to ischaemic exercise
(Naylor et al. 2005).

Acutely, during a bout of PS, a reduction in Q̇
in the contralateral, unstretched limb was found to
promptly recover during the relaxation phase (Venturelli
et al. 2019). The authors suggested that recovery
was induced by systemic sympathetic-mediated vaso-
constriction activated by the stretch-induced mechano-
reflex (Venturelli et al. 2019). When PS is applied
chronically over a long period, repeated stimulations of
the vessel wall (alternating vasoconstriction and vaso-
dilatation) may induce changes in the systemic auto-
nomic control of Q̇ distribution, possibly leading to
an increase in vascular function. It is still debated,
however, whether PS training may also affect the vascular
function in the feeding artery of the contralateral
muscle, which is not directly involved in stretching.
Together with changes in local control mechanisms,
possible PS training-induced changes in the systemic
autonomic control of Q̇ distribution have also been
reported (i.e. reduced blood pressure and aortic wave
reflection magnitude (Wong & Figueroa, 2014)), although
its effectiveness remains controversial (Farinatti et al. 2011;
Hotta et al. 2013; Williams et al. 2013).

Vascular training, i.e. possible PS training-induced
changes in local and systemic mechanisms underlying
vascular function, may have practical implications for
maintaining or even improving cardiovascular health in
people with limited mobility and/or while bedridden.

With this in mind, we investigated the effects of PS
training on vascular function and stiffness of the arteries
directly involved (i.e. femoral and popliteal arteries)
and not directly involved (i.e. contralateral femoral and
popliteal arteries and brachial artery) in manoeuvres
applied to the plantar flexor, knee extensor and hip flexor
muscles. To do this, we measured vascular function and
arterial stiffness before and after 12 weeks of PS training.
Our hypothesis was that repetitive fluctuations in Q̇ and
Ẏ during PS bouts would provide effective stimulus to
affect the central and local Q̇ control mechanisms, thus
improving vascular function and arterial stiffness not only
in the feeding arteries of the stretched muscle, but also in
those districts not directly involved in PS training.

Methods

Ethical approval

All participants provided written, informed consent after
being informed about the aims of the study and the
potential risks derived from tests and methods. The
Institutional Review Board of the Università degli Studi
di Milano approved the study (CE 27/17). The study
was registered at ClinicalTrial.gov (ID: NCT04271241)
and performed in accordance with the principles of the
Helsinki Declaration. The researchers who analysed the
data were blinded to group allocation.

Participant recruitment

Figure 1 illustrates the study flow chart A total of 54 healthy
adults volunteered to participate in the study. Exclusion
criteria were: neurological, vascular and musculoskeletal
disorders of the lower and upper limbs; being on
pharmacological therapy related to either neural and/or
vascular response, including hormonal contraceptives and
oral supplements; being a current or former smoker;
having an irregular menstrual cycle (26 to 35 days) up
to 3 months before the beginning of the study; contra-
indications to joint mobilization; regular involvement in
a PS training programme. Based on previous research
(Hotta et al. 2013; Nishiwaki et al. 2015; Venturelli et al.
2017a), for this study we used changes in blood flow as
main outcomes, a two-way analysis of variance (ANOVA;
within-group factor: time; between-groups factor: inter-
vention) in the statistical approach, with an α level of
0.05 and a required power (1-β) of 0.80; the desired
sample size, computed using statistical software (G-Power
3.1, Dusseldorf, Germany) resulted in 36 participants.
Accordingly, the study sample was 39 participants (19
females and 20 males, age 23 ± 2 years, body mass
69 ± 3 kg, stature 1.68 ± 0.11 m, mean ±standard
deviation (SD)) were enrolled and randomly assigned to
one of three groups: bilateral PS (PSBil; n = 14 (7F/7M), age
23 ± 2 years, body mass 68 ± 4 kg, stature 1.68 ±.0.09 m,
ankle ROM 25 ± 3 deg, knee ROM 145 ± 9 deg); mono-
lateral PS (PSMono; n = 13 (6F/7M), age 22 ± 2 years,
body mass 70 ± 3 kg, stature 1.71 ±.0.11 m, ankle ROM
24 ± 4 deg, knee ROM 145 ± 12 deg), and control group
(no stretching, Ctr: n = 12 (6F/6M), age 23 ± 2 years,
body mass 69 ± 3 kg, stature 1.70 ±.0.08 m, ankle ROM
26 ± 6 deg, knee ROM 146 ± 12 deg).

Study design

Before testing, a preliminary session was conducted
for familiarizing the participants with the procedures
to identify maximum isometric voluntary contraction
(MVC) of the knee extensor and plantar flexor muscles
of both limbs.

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Measurements were taken bilaterally: pulse wave
analysis (PWA) and pulse wave velocity (PWV) were
measured at the femoral and the radial artery by
photo-plethysmography as an indirect marker of arterial
stiffness (Doupis et al. 2016); single passive limb
movement (sPLM), flow-mediated dilatation (FMD),
and hypoxic exercise (HEx) tests were performed on
the femoral, the popliteal and the brachial arteries,
respectively. Knee and ankle flexion ROM were measured.

On completion of measurements, the ultrasound probe
position was marked on a transparency sheet, together
with skin landmarks (moles, scars, angiomas, etc). Results

of the familiarization and the pre-training experimental
sessions were used to calculate intersession reliability.
All measurements were taken at the beginning (Pre), at
6 weeks (week 6), 12 weeks of PS training (week 12), and
then again at 6 weeks post-intervention (follow-up). The
participants were tested at the same time of the day in
a climate-controlled laboratory (temperature 20 ± 1°C
and relative humidity 50 ± 5%) to minimize confounders
due to circadian rhythms. For the women, all the tests
were conducted on the same day of the menstrual
cycle (early follicular phase days 3 ± 3). The female
participants recorded their menstrual cycle in a personal

Figure 1. Study flow chart

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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diary throughout the study, which was used to assess
the early follicular phase and allowed the women to be
tested on the same menstrual day. On the test days, the
participants came to the laboratory after having fasted
overnight and refrained from caffeine and other similar
substances for at least 12 h and from intensive exercise
for at least 48 h prior to the tests. The two stretching
groups (PSBil and PSMono) underwent 12 weeks of PS
training, 5 sessions per week (60 sessions in total). Each
PSBil session lasted 40 min and included two exercises for
the knee extensor and the plantar flexor muscles: 45 s
elongation and 15 s recovery in the resting position; the
set was repeated five times (Venturelli et al. 2019). In
the PSMono sessions the exercises were performed using
only the right limb and lasted 20 min. The Ctrl group
received no PS training (Fig. 2 gives an example of the PS
training exercises). To enhance compliance, daily classes
were held at different times of the day (morning and after-
noon) at the University Sports Centre gym. Each class was
led by an expert supervisor who monitored attendance,
correct exercise execution and intensity (80% of the point
of discomfort) (Cè et al. 2020). Participants failing to
attend at least 80% of classes were excluded from the
study, and a new participant was recruited to substitute the
drop out.

Since the increase in Ẏ occurring during PS has
been advocated as the mechanism possibly triggering the
improvements in vascular function, a subsample of 20
participants (10F/10M), age 22 ± 1 years, body mass
69 ± 4 kg, stature 1.71 ± .0.12 m, ankle ROM 23 ± 4 deg,
knee ROM 143 ± 13 deg) underwent a third session during
which the femoral and popliteal artery Ẏ were calculated
during a stretching bout involving the knee extensor and
plantar flexor muscles.

Measurements and data analysis

Measurements were performed bilaterally in all groups.
Data for the PSBil group are presented as the average
between the two limbs, while the data for the PSMono group
are presented separately for the stretched (PSMonoSL) and
the contralateral limb (PSMonoCL); this was done to detect
any possible crossover effect. The data for the upper limbs
were calculated as the average of the two limbs.

Range of motion (ROM). To monitor the changes in knee
and ankle joint ROM, a bi-axial electrogoniometer (TSD
130A, Biopac System, Goleta, CA, USA) was utilized. To
measure knee ROM, the electrogoniometer was placed
with one axis on the external condyles of the knee joint
and the other on the external face of the fibula; to measure
ankle joint ROM, the instrument was positioned on the
external face of the fibula and on the calcaneum.

Maximum isometric voluntary contraction (MVC). MVC
of the knee extensor muscles was measured with the
participant supine on an ergometer and the knee flexed at
90 deg and firmly secured at the ankle with a Velcro strap
(Velcro Industries Inc., Manchester, NH, USA) to a load
cell (SM-2000N operating linearly between 0 and 2000 N;
Interface, Crowthorne, UK) for force signal detection. The
MVC of the plantar flexor muscle was measured with the
participant prone on the ergometer, with the foot fixed by
a Velcro strap to a mobile metal plate instrumented with a
load cell (SM-2000 N, Interface). The hips and shoulders
were firmly secured to the ergometer. After a standardized
warm-up (10 × 2-s contractions at 50% MVC determined
during familiarization), three MVC trials were performed
interspersed by at least 3 min of recovery. The participants

Figure 2. Photographs showing the passive stretching exercises
Each exercise comprises a set of 5 stretches of 45 s with 15 s of rest in between. The exercises were repeated
bilaterally in the PSBil group and unilaterally (right limb) in the PSMono group. A, hip extension + knee flexion; B,
hip extension + knee flexion in orthostatic position; C, ankle dorsiflexion in orthostatic position; D, hip flexion +
ankle dorsiflexion with straight leg in supine position.

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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were instructed to push as fast and hard as possible for
3 s. The force signal was transmitted to an A/D converter
(UM 150, Biopic, Biopac Systems Inc., Goleta, CA, USA),
sampled at a fixed sampling rate of 1000 Hz, and stored
on a personal computer. The maximum force recorded
during the three trials was defined the MVC and entered
in the data analysis.

Pulse wave analysis (PWA) and velocity (PWV). Blood
pressure wave analysis and arterial stiffness were measured
by determining the PWA and PWV using an applanation
tonometry technique (Doupis et al. 2016). PWA and PWV
were measured using a SphygmoCor PX (Atcor Medical
Blood Pressure Analysis System, Sydney, Australia) after
the participant had rested for at least 20 min in supine
position.

Blood pressure wave parameters, i.e. systolic blood
pressure (SBP), diastolic blood pressure (DBP), pulse
pressure (PP), aortic augmentation (AA), augmentation
index (AIx), AIx corrected for heart rate of 75 beats�min−1

(AIx75), and tension time index referred to the systolic
tension time index (TTI) were measured by means of
applanation tonometry of the radial artery, as described
elsewhere (O’Rourke, 1999). Radial artery pressure wave
amplitude was recorded non-invasively with a pencil-type
probe (tonometer) placed over the right radial artery
of the wrist. After a reproducible signal was obtained,
20 sequential waveforms covering a complete respiratory
cycle were acquired from the system and used by
the software to generate an average peripheral and a
corresponding central waveform, which was then under-
went further analysis (O’Rourke, 1999). The systolic part
of the wave form was characterized by two pressure peaks
of the central waveform. The first peak results from left
cardiac ventricle ejection and the second one from wave
reflections from the periphery. The difference between
the two peaks is the degree of central arterial pressure
augmentation due to wave reflection (i.e. the AA). The AIx
calculated by the software SphygmoCor (Version 9.0) was
the proportion of the central aortic PP that is attributed to
the reflected pulse wave. Moreover, due to its dependency
on heart rate, the AIx was corrected for a heart rate
of 75 beats min−1 (AIx75). The TTI was defined as an
indirect marker of myocardial oxygen demand (Chemla
et al. 2008). The amplitude and timing of the reflected
wave depend on the stiffness of small vessels and large
arteries and are measurements of systemic arterial stiffness
(O’Rourke, 1999; Pauca et al. 2001; Doupis et al. 2016).

PWV was measured between the carotid and the radial
(PWVCR) and between the carotid and the femoral artery
(PWVCF) with the participant lying still in supine position.
Pulse measurements were performed non-invasively using
a SphygmoCor probe over the carotid and the femoral or
the radial artery while ECG was performed simultaneously
(Pauca et al. 2001; Qureshi et al. 2007; Doupis et al. 2016).

To ensure a stable, artefact-free ECG, the skin was properly
prepared (hair removed at the electrode site and the skin
cleaned with an alcohol wipe). A minimum of 20 s of signal
was recorded after a strong, accurate and reproducible
pulse wave signal was obtained. The distance from the
carotid to the femoral or the radial artery was measured
directly between each artery and the suprasternal notch.
The measurements were entered into the SphygmoCor
software database. PWV was calculated by measuring the
time delay between two characteristic time points (i.e.
carotid-femoral arteries, PWVCF, or carotid and radial
arteries, PWVCR) on two pressure waveforms at a known
distance apart. The SphygmoCor method uses the foot of
the waveform as an onset point for calculating the time
differences between the R wave of the ECG and the pulse
waveforms at each site. PWV was automatically calculated
by the SpygmoCor software as PWVCF or PWVCR distance
divided by the wave travelling time between the two
measurement sites (Pauca et al. 2001; Qureshi et al.
2007; Doupis et al. 2016). PWVCF and PWVCR were
used as central and peripheral arterial stiffness indexes,
respectively. PWA and PWV measurements were taken at
least 3 times, obtaining an operator index �95%, and are
expressed as the average.

Single passive limb movement (sPLM). In sPLM, the
blood flow hyperaemic response is determined by a single
knee flex-extension and not a continuous movement as
in the traditional PLM. In sPLM, central haemodynamic
responses are minimized, but the manoeuvre still
facilitates the assessment of peripheral vascular function.
Indeed, sPLM in comparison to PLM, did not evoke a
measurable increase in either heart rate or cardiac output,
probably as a consequence of the minimal afferent feed-
back due to the brevity of the sPLM manoeuvre (Venturelli
et al. 2017b). sPLM was performed in accordance with
recommended procedures (Trinity et al. 2012; Venturelli
et al. 2017b; Bisconti et al. 2019). Participants rested in an
upright-seated position for 10 min before data collection
started and remained in this position until the end of
the test. The sPLM protocol consisted of 30 s of base-
line peripheral haemodynamic data collection, followed
by a single passive knee flexion and extension of 1 s,
after which the leg was maintained fully extended for the
remaining 59 s for post-movement data collection. sPLM
was performed by a member of the research team, who
moved the participant’s leg through a 90 deg ROM at
1 Hz. Arterial blood velocity (Vmean) and vessel diameter
(D) were measured at the common femoral artery of the
passively moved leg, distal to the inguinal ligament and
proximal to the deep and superficial femoral bifurcation
by Doppler ultrasound (Logiq-7, General Electric Medical
Systems, Milwaukee, WI, USA). Mean blood velocity was
measured with a 9 MHz linear array transducer positioned
an insonation angle of 60 deg. The sample volume was
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centred and size-maximized according to vessel diameter
(Trinity et al. 2012). Femoral Q̇ (Q̇ fem) was calculated at
baseline and at peak after single passive knee flexion and
extension by calculating the D and mean blood velocity as:

Q fem(ml × min−1) = Vmean × π × (vessel D/2)2 × 60.

The cumulative Q̇ fem was integrated (area under
the curve, AUC) using the trapezoidal rule and then
calculated.

Flow-mediated dilatation (FMD). FMD was measured
at the popliteal and the brachial artery according to
recommended procedures (Harris et al. 2010; Bisconti
et al. 2018, 2019). Before FMD, the participants lay supine
for approximately 20 min to restore baseline cardio-
vascular values. An arterial pressure cuff was placed
around the calf muscles (popliteal artery) and on the
forearm immediately distal to the olecranon process
(brachial artery) to generate an ischaemic stimulus when
inflated. Following baseline assessment, the blood pressure
cuff was inflated to 280 mm Hg for the popliteal and
250 mm Hg for the brachial artery for 5 min. Arterial D
and Vmean recordings resumed at baseline, 30 s prior to
cuff deflation and continued for 2 min post-deflation, as
described elsewhere (Corretti et al. 2002; Harris et al. 2010;
Wray et al. 2013). A 9-MHz linear array and a 15-MHz
linear array transducer attached to a high-resolution
ultrasound machine were used to image the popliteal
artery in the distal third of the leg and the brachial artery in
the distal third of the upper arm. When an optimal image
was obtained, the probe was held stable and longitudinal
in B-mode, and images of the lumen-arterial wall inter-
face were acquired. Continuous Doppler velocity was
measured, and the data were collected using the lowest
possible insonation angle (<60 deg). The FMD data were
exported in AVI format and analysed using commercially
available software (Brachial Artery Analyzer for Research,
Medical Imaging Applications, LLC, Coralville, IA, USA),
which is largely independent of investigator bias. FMD
was quantified as the maximal change in artery diameter
after cuff release, expressed as a percentage increase above
baseline:

(
Dpeak − Dbas

)
/Dbas × 100.

Popliteal (Q̇ pop) and brachial artery blood flow (Q̇ brac)
was calculated as described for sPLM measurement.
Popliteal and brachial artery Ẏ was calculated post-cuff
release with the equation:

shear rate (s−1) = 8Vmean/D

The cumulative Ẏ, corresponding to the reactive hyper-
aemia post-cuff release (total Ẏ from cuff release to
time-to-peak, Ẏ AUC) was calculated using the trapezoidal
rule.

The Ẏ AUC reflects the amount of mechanical stimulus
applied to the endothelium during cuff release hyperaemic
response until time-to-peak. Given that FMD is primarily
dependent on endothelial response to mechanical stimuli,
the FMD was divided by the Ẏ AUC (FMD/ Ẏ) (Pyke &
Tschakovsky, 2005; Padilla et al. 2008).

Artery dilatation response to ischaemic exercise (IEx).
In order to detected possible arterial structural changes,
popliteal and brachial artery dilatation after IEx was
tested by applying a protocol described elsewhere (Naylor
et al. 2005). IEx was performed after a further 30 min
of rest and consisted in 5 min of ischaemia, during
which a voluntary isometric contraction of the plantar
flexor muscles (popliteal artery) or the handgrip muscles
(brachial artery) was over-impressed. The force output
was standardized at 3 kg; the contractions lasted 1 s and
were performed every 3 s over 3 min (Naylor et al. 2005). As
done in the FMD tests, arterial D and Vmean were recorded
during IEx at baseline, 30 s prior to cuff deflation, and
continued for 5 min post-deflation. The same parameters
as in the FMD tests were calculated.

Acute passive stretching. The participants rested in a
supine position during stretching for the knee extensor
(Venturelli et al. 2019) and in a prone position for plantar
flexor muscles (Kruse et al. 2016) for 20 min before
starting the data collection and remained in this position
throughout the entire duration of the data collection. The
two stretching bouts were separate by 60 min rest, during
which the participant remained at rest on a medical bed. PS
protocol consisted of 5 min of resting baseline followed by
passive static elongations for 45 s and passive relaxations
for 15 s, repeated five times. During the entire PS protocol,
the muscles were stretched by the same operator up to
a point of discomfort similar to those required during
the PS training. The knee and ankle joint angles were
continuously recorded using a biaxial goniometer (model
no. TSD 130A; Biopac Systems). Force output between the
passively stretched leg and the operator arms was recorded
during the protocol by a load cell (model SM-2000 N;
Interface, Crowthorne, UK). Specifically, the load cell was
positioned 5 cm above the ankle or on the metatarsum
of the stretched limb, and a member of the research team
pushed perpendicularly the load cell to stretch the leg
extensor for 45 s. The passive force output during the 45 s
of the consecutive flexion of the PS protocol was displayed
on a PC screen so as to maintain constant the passive force
throughout the elongations. During the two stretching
bouts, the artery’s D and the antegrade and retrograde
Vmean were measured from the femoral and the popliteal
artery. Antegrade, retrograde and mean Ẏ during the 5
elongations and relaxation phases were then calculated as
in the FMD tests.

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Statistical analysis

Statistical analysis was performed using a statistical
software package (IBM-SPSS Statistics v. 26, Armonk,
NY, USA). The Shapiro-Wilk test was used to check
normal distribution of the data. To determine inter-
session reliability in vascular function parameters, intra-
class correlation coefficient (ICC) and percentage change
of the standard error of the measurement (SEM%)
were calculated. The ICC was interpreted as follows:
>0.90, very high; 0.89–0.70, high; 0.69–0.50, moderate
(Munro, 2004). The minimal detectable change at 95%
confidence interval (MDC95%) was used to detect the
sensitivity of the effects on vascular function before
and after the stretching intervention (Donoghue et al.
2009). To assess significant effects of stretching, two-way
ANOVA (within-group factor: time, 4 levels (Pre, week 6,
week 12, and follow-up); between-groups factor: inter-
vention, 4 levels (Ctrl, PSBil, PSMonoSL, PSMonoCL)).
To calculate the difference in changes between the
groups, analysis of covariance (ANCOVA) was performed,
entering the baseline (Pre) values as covariate. A one-way
ANOVA for repeated measures (within-group factor:
time, 5 levels) was applied to check for differences in
Ẏ in elongation and relaxation phases occurring during
acute passive stretching bout. Multiple comparisons were
performed by applying Bonferroni’s correction. Statistical
significance was set at P < 0.05. Data are presented
as mean ± standard deviation. Cohen’s d effect size
was calculated and interpreted as: 0.00–0.19, trivial;
0.20–0.59, small; 0.60–1.19, moderate; 1.20–1.99, large;
2.00, very large (Hopkins et al. 2009). The 95% CI of d
is reported (https://www.cem.org/effect-size-calculator).
A Pearson correlation test was applied to check for
possible correlations between the percentage changes in
ankle and knee ROM, PWA and PWV variables, and in
sPLM, FMD and ischaemic exercise tests. The magnitude
of correlations was interpreted as follows: (R) < 0.1,
trivial; 0.10–0.30, low; 0.31–0.50, moderate; 0.51–0.70,
high; 0.71–0.90, very high;t 0.91–0.99, nearly perfect; 1,
perfect (Hopkins et al. 2009).

Results

Participant compliance

Attendance was about 93% (56/60 training sessions).
Three participants dropped out because of injury
(unrelated to the training protocol) and lack of time. They
were immediately replaced to maintain the sample size.

Reliability

Table 1 presents the intersession reliability for PWA, PWV,
and vascular function. ICC and SEM% in PWA and

PWV ranged from 0.893 and 0.9% to 0.987 and 5.0%,
respectively. ICC and SEM% in sPLM ranged from 0.947
and 1.7% to 0.958 and 2.2%, respectively. ICC and SEM%
in popliteal and brachial FMD ranged between 0.945 and
0.6% and between 0.981 and 1.6%, respectively. ICC and
SEM% in popliteal and brachial HEx ranged from 0.881
and 0.5% to 0.991 and 3.0%, respectively. MDC95% ranged
between 1.3 and 13.9%.

ROM and MVC

ANOVA revealed a significant time × intervention inter-
action for the ankle (F = 5.46, P < 0.001) and knee ROM
(F = 5.67, P < 0.001). Main effects for time were found
in ankle (F = 9.13, P < 0.001) and knee joint ROM
(F = 4.12, P < 0.001). Ankle joint ROM was increased
at week 12 (PSBil: +3.3 ± 0.71 deg, d = 1.06 (0.17/1.95);
PSMonoSL: +3.2 ± 0.96 deg, d = 1.02 (0.09/1.95), p = 0.01
in PSBil and PSMonoSL), and knee joint ROM in the
PSBil and the PSMono group was increased at week 6
(PSBil: +8.5 ± 3.4 deg, d = 0.92 (0.13/1.70); PSMonoSL:
+8.9 ± 2.6 deg, d = 0.95 (0.02/1.87), p = 0.02 in PSBil and
PSMonoSL), whereas no changes were noted for the Ctrl and
PSMonoCL groups. ROM of the ankle and the knee joint
returned to pre-training levels at follow-up assessment.
The changes in knee and ankle joint ROM at any time
were greater for the PSBil and the PSMonoSL group than for
the Ctrl group (P < 0.001). Neither time × intervention
interaction nor main effect for time was found for MVC.
Plantar flexor and knee extensor muscle MVC remained
unchanged during the study in all groups.

Acute passive stretching

Table 2 provides the changes in antegrade, retrograde,
and mean Ẏ of the femoral and popliteal artery occurring
during the 5 elongations and relaxations of the acute
passive stretching bout involving the knee extensor and
plantar flexor muscles, respectively. Independently from
the artery, during the elongation phase the antegrade and
mean Ẏ increased during the first stretch (P < 0.001)
and then decrease from baseline (P < 0.001), while the
retrograde Ẏ increased (P < 0.001). On the contrary,
during the relaxation phase the antegrade and mean
Ẏ increased (P < 0.001) and retrograde Ẏ decreased
(P < 0.001).

PWA and PWV

Figures 3 and 4 present PWA and PWV measurements.
ANOVA disclosed a significant time × intervention inter-
action for SBP (F = 2.25, p = 0.02), DBP (F = 8.18,
P < 0.001), MAP (F = 9.12, p = 0.002), HR (F = 3.15,
p = 0.002), PP (F = 5.67, P < 0.001), AIx75 (F = 3.04
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Table 1. Intersession reliability (ICC), and sensitivity (MDC95%) in the main parameters calculated during pulse wave analysis (PWA)
and velocity (PWV), single passive limb movement (sPLM), flow-mediated dilatation (FMD) and ischaemic exercise (IEx) tests

Trial 1
(mean ± SD)

Trial 2
(mean ± SD) ICC SEM% MDC95%

PWA/PWV SBP (mm Hg) 109.0 ± 6.0 108.0 ± 6.1 0.974 0.9 1.7
DBP (mm Hg) 76.0 ± 7.1 76.0 ± 7.7 0.946 2.2 4.6
HR (bpm) 73.0 ± 9.2 74.0 ± 8.3 0.968 2.1 4.1
AA (mm Hg) 21.9 ± 2.3 19.7 ± 2.5 0.923 2.9 8.0
AIx (%) 20.1 ± 2.6 19.7 ± 2.5 0.987 1.5 4.1
TTI (ms) 357.0 ± 16.0 357.7 ± 15.0 0.912 1.3 2.5
PWVCF (m s−1) 6.8 ± 0.9 6.5 ± 0.8 0.960 2.6 7.2
PWVCR (m s−1) 7.5 ± 1.2 7.7 ± 1.2 0.893 5.0 13.9

sPLM Dfem bas (mm) 7.8 ± 0.6 7.5 ± 0.6 0.947 1.7 4.7
Vpeak (cm s−1) 34.6 ± 3.8 34.7 ± 3.5 0.958 2.2 6.0

FMD popliteal artery Dpop,bas (mm) 5.0 ± 0.2 4.9 ± 0.2 0.972 0.6 1.7
Dpop,peak (mm) 6.1 ± 0.2 6.0 ± 0.2 0.958 0.7 2.0
Vpeak (cm s−1) 34.8 ± 2.3 34.6 ± 2.0 0.947 1.4 4.0

FMD brachial artery Dbrach,bas (mm) 3.1 ± 0.2 3.1 ± 0.2 0.981 0.8 2.3
Dbrach,peak (mm) 3.7 ± 0.2 3.6 ± 0.2 0.945 1.5 4.1
Vpeak (cm s−1) 70.3 ± 6.7 70.0 ± 5.5 0.971 1.6 4.3

IEx popliteal artery Dpop,bas (mm) 5.0 ± 0.3 5.0 ± 0.2 0.991 0.5 1.3
Dpop,peak (mm) 6.1 ± 0.3 6.0 ± 0.3 0.962 0.8 2.3
Vpeak (cm s−1) 64.1 ± 5.4 63.1 ± 3.6 0.899 2.2 6.2

IEx brachial artery Dbrach,bas (mm) 3.1 ± 0.2 3.1 ± 0.2 0.989 0.6 1.7
Dbrach,peak (mm) 3.8 ± 0.2 3.8 ± 0.3 0.956 1.4 4.0
Vpeak (cm s−1) 119.3 ± 12.3 121.9 ± 8.8 0.881 3.0 8.4

n = 39. MDC95%, minimum detectable change at 95% confidence interval; ICC, intraclass correlation coefficient; SEM%, standard error
of measurement as a percentage; CF, carotid-femoral; CR, carotid-radial; SBP, systolic blood pressure; DBP, diastolic blood pressure;
HR, heart rate; PP, pulse pressure; Aix, augmentation index; TTI, tension time index; D, diameter; bas, baseline; Vpeak peak velocity.
∗P < 0.05 vs. Pre, #P < 0.05 vs. Ctrl.

p = 0.011), TTI (F = 4.48, p = 0.001), PWVCF

(F = 4.09, P < 0.001), and PWVCR (F = 4.47, P < 0.001).
A main effect for time was found for SBP (F = 6.81,

p = 0.001), DBP (F = 100.15, P < 0.001), MAP (F = 5.01,
P < 0.001), HR (F = 5.24, P < 0.001), PP (F = 5.87,
P < 0.001), AIx75 (F = 8.21 P < 0.001), AA (F = 7.19,
P < 0.001), TTI (F = 6.27, p = 0.002), PWVCF

(F = 6.32, P < 0.001), and PWVCR (F = 6.94, P < 0.001).
SBP, DBP and MAP were decreased significantly in

the PSBil group at week 6 (MAP: −4.6 ± 0.9 mmHg.,
d = −1.06 (−1.95/−0.17), p = 0.004) and in the PSMono

group at week 12 (MAP: −4.8 ± 1.0 mmHg., d = −1.20
(−2.15/−0.25), P < 0.001) and returned to baseline at
follow-up assessment. No changes in HR were observed
in any group. PP, AIx75 and TTI were decreased in
the PSBil and the PSMono group at week 12 (TTI. PSBil:
−23 ± 5.6 ms, d = −1.70 (−2.64/−0.77), P < 0.001;
PSMono: −12 ± 6.6 ms, d = −0.74 (−1.57/−0.08),
p = 0.004). PP remained reduced at follow-up, whereas
AIx75 and TTI returned to baseline values. AA was
decreased in the PSBil and the PSMono group at week 6
(PSBil: −2.4 ± 0.6 mmHg, d = −1.59 (−2.51/−0.67),
p = 0.003; PSMono: −2.5 ± 0.9 mmHg, d = −1.14
(−2.00/−0.28), p = 0.002) and at week 12 (PSBil:

−2.9 ± 0.7 mmHg, d = −1.88 (−2.84/−0.92), P < 0.001;
PSMono: −3.7 ± 0.9 mmHg, d = −1.72 (−2.65/−0.78),
P < 0.001) and returned to baseline at follow-up. PWVCF

and PWVCR were significantly decreased in all PS training
groups at week 6 and week 12, respectively (P < 0.001).
They remained reduced in the PSBil and PSMono group at
follow-up (p = 0.002 and 0.005). Changes in SBP, DBP and
MAP at any time were greater in the PSBil and the PSMono

group than in the Ctrl group (P < 0.001). The changes in
PWA and in PWVCF at week 12 were greater in the PSBil

and the PSMono group than in the Ctrl group (P from 0.005
to <0.001).

sPLM

Figure 5 presents the results of femoral artery
vascular function testing. ANOVA disclosed significant
time × intervention interactions for Q̇ fem,bas (F = 6.11,
P < 0.001), Q̇ fem,peak (F = 5.37, P < 0.001), �Q̇ fem

(F = 5.54, P < 0.001), and AUC (F = 6.66, P < 0.001).
Main effects for time were found for Q̇ fem,bas (F = 5.34,
P < 0.001), Q̇ fem,peak (F = 7.82, P < 0.001), �Q̇ fem

(F = 7.56, P < 0.001), and AUC (F = 8.15, P < 0.001).
In all PS training groups, the other parameters except for
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Table 2. Changes in the antegrade, retrograde and mean shear rate values in the femoral and popliteal artery during the elongation
and relaxion phases of the acute stretching bout administered to the knee extensor and plantar flexor muscle

Elongation phase
Shear rate

(s−1) Baseline 1st 2nd 3rd 4th 5th
One-way ANOVA RM

(F; P)

Femoral artery Antegrade 79 ± 17 117 ± 14∗ 70 ± 17† 47 ± 13† 43 ± 12† 32 ± 13† 11.04; <0.001
Retrograde −3 ± 1 −6 ± 3∗ −5 ± 2∗ −4 ± 2 −5 ± 3∗ −4 ± 3 7.15; <0.001
Mean 76 ± 15 111 ± 12∗ 65 ± 15† 43 ± 10† 38 ± 11† 28 ± 11† 8.94; <0.001

Popliteal artery Antegrade 47 ± 5 70 ± 14∗ 42 ± 9† 28 ± 5† 26 ± 6† 19 ± 5† 10.7; <0.001
Retrograde −5 ± 1 −6 ± 2 −7 ± 2∗ −7 ± 3∗ −6 ± 2 −8 ± 3∗ 8.30; <0.001
Mean 42 ± 4 64 ± 13∗ 35 ± 8† 21 ± 5† 12 ± 5† 11 ± 3† 9.1; <0.001

Relaxation phase
Shear rate

(s−1) Baseline 1st 2nd 3rd 4th 5th
One-way ANOVA RM

(F; P)

Femoral artery Antegrade 79 ± 17 189 ± 27∗ 167 ± 16∗ 171 ± 25∗ 169 ± 17∗ 130 ± 12∗ 12.5; <0.001
Retrograde −3 ± 1 −1 ± 1† −0.7 ± 1† −1 ± 1† −0.6 ± 1† −0.9 ± 1† 7.36; <0.001
Mean 76 ± 15 188 ± 25∗ 166 ± 16∗ 170 ± 23∗ 168 ± 16∗ 129 ± 10∗ 9.60; <0.001

Popliteal artery Antegrade 47 ± 5 113 ± 14∗ 100 ± 13∗ 103 ± 13∗ 101 ± 15∗ 78 ± 12∗ 12.29; <0.001
Retrograde −5 ± 1 −2 ± 2† −2 ± 1† −1.5 ± 2† −1 ± 2† −2 ± 1† 5.50; <0.001
Mean 42 ± 4 111 ± 12∗ 98 ± 11∗ 101 ± 10∗ 100 ± 14∗ 76 ± 11∗ 11.10; <0.001

∗P < 0.05 higher than baseline; †P < 0.05 lower than baseline (n = 20). Data are presented as mean ± standard deviation.

Dfem,bas were significantly increased at week 6 (�Q̇ fem

PSBil: +52 ± 11.2 ml�min−1, d = 1.34 (0.67/1.77),
P < 0.001; �Q̇ fem PSMono: +31 ± 5.6 ml�min−1, d = 1.14
(0.28/2.00), P < 0.001) and remained elevated up to
follow-up (P < 0.001 for all parameters). Changes in
Q̇ fem bas at week 6 and week 12 for the PSBil and the
PSMonoSL group were greater than for the Ctrl group (P
from 0.003 to <0.001). Changes in Q̇ fem,peak were greater
for the PSBil and the PSMonoSL group than for the Ctrl and
the PSMonoCL group (P from 0.004 to < 0.001). Changes
in �Q̇ fem were greater for the PSBil and the PSMonoSL
group than for the Ctrl group at any time and at week
12 and follow-up than for the PSMonoCL group (P from
0.01 to < 0.001). Changes in AUCfem were greater at
week 6 for the PSBil and the PSMonoSL group than for
the Ctrl group, and at week 12 for the PSBil, the PSMonoSL,
and the PSMonoCL than for the Ctrl group (P from 0.009
to < 0.001)

FMD

Figures 6 and 7 present FMD test results for the popliteal
and the brachial artery, respectively. For the popliteal
and the brachial artery, significant time × interventions
interaction were observed in Dbas (F = 7.03 and 6.57,
P < 0.001), Dpeak (F = 4.58 and 4.46, P < 0.001), FMD%
(F = 2.34 and 2.80, p = 0.017 and 0.005), AUC (F = 7.40
and 7.47, P<0.001), Ẏ AUC (F=3.59 and 3.91, P<0.001),
FMD/Ẏ (F = 2.56 and 2.02, p = 0.010 and 0.042), and
Q̇ peak (F = 7.11 and 7.35, P < 0.001). Main effects for
time were found in Dbas (F = 6.27 and 6.62, P < 0.001),

Dpeak (F = 7.02 and 7.44, P < 0.001), FMD% (F = 3.56
and 8.99, p = 0.022 and < 0.001), AUC (F = 7.37 and
7.41, P < 0.001), ẎAUC (F = 7.07 and 7.35, P < 0.001),
and Q̇ peak (F = 7.34 and 6.73, P < 0.001).

Dpop,bas andQ̇ pop,bas were significantly increased in the
PSBil and the PSMonoSL group at week 12 (P from 0.01
to 0.04). Dpop,peak and FMDpop% (p = 0.002) were
significantly increased in the PSBil and the PSMonoSL
group at week 6 (Dpop,peak PSBil: +0.16 ± 0.024 mm,
d = 0.89 (0.22/1.52), P < 0.001; Dpop,peak PSMonoSL:
+0.17 ± 0.015 mm, d = 0.99 (0.31/1.71), P < 0.001) and
in the PSMonoCL group at week 12 (Dpop,peak PSMonoCL:
+0.18 ± 0.06 mm, d = 0.71 (−0.11/1.54, p = 0.02),
before returning to baseline at follow-up. Q̇ pop,peak and
AUCpop were increased in the PSBil and the PSMonoSL
group at week 6 (Q̇ pop,peak PSBil: +33 ± 1.5 ml�min−1,
d = 1.21 (0.57/1.72), P < 0.001; Q̇ pop,peak PSMonoSL:
+34 ± 2.0 ml�min−1, d = 1.24 (0.62/1.81), P < 0.001)
and week 12 in the PSMonoCL group up to follow-up
(Q̇ pop,peak PSMonoCL: +29 ± 2.6 ml�min−1, d = 1.01
(0.45/1.44, p = 0.003). Ẏpop AUC was decreased in the PSBil

and the PSMonoSL group at week 6 until follow-up (Ẏpop

AUC PSBil: −2.91 ± 0.61 s−1, d = −0.74 (−1.56/−0.09),
p = 0.03; Ẏpop AUC PSMonoSL: −2.57 ± 0.78 s−1, d =−0.76
(−1.59/−0.06), p = 0.005). Except for Dpop,bas, changes in
all the other parameters were greater at week 6 and week
12 in the PSBil and the PSMonoSL group than in the Ctrl
group (P from 0.004 to < 0.001).

Dbrach,bas and Q̇ brach,bas remained unchanged in all
groups, whereas Dbrach,peak was significantly increased in
the PSBil and the PSMono at week 12 until follow-up

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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(Dbrach,peak PSBil: +0.22 ± 0.041 mm, d = 0.88 (0.04/1.71),
p = 0.004; Dpop,peak PSMonoSL: +0.18 ± 0.056 mm, d = 0.82
(0.01/1.65), p = 0.007). FMDbrach% was increased at week
12 in the PSBil and the PSMono (p = 0.006 and 0.01), before
returning to baseline at follow-up. Q̇ brach,peak and AUCbrach

were increased in the PSBil and the PSMono group at week
12 up to follow-up (P from 0.02 to 0.002). Ẏbrach AUC
was decreased in the PSBil and the PSMono group at week

12, returning to baseline at follow-up (Ẏpop AUC PSBil:
−30 ± 5.1 s−1, d = −1.21 (−2.08/−0.34), p = 0.003; Ẏpop

AUC PSMonoSL: −23 ± 5.1 s−1, d = −1.30 (−2.18/−0.34),
p = 0.001). FMD/Ẏbrach was increased in the PSBil and the
PSMono group in week 12 returning to baseline at follow-up
(p = 0.002 to 0.004). Changes in Ẏbrach AUC were greater
for the PSBil and the PSMono than for the Ctrl. group at
week 12 and follow-up (P < 0.001 for both comparisons).

Figure 3. Pulse wave analysis
Individual data for systolic blood pressure, diastolic blood pressure, pulse pressure, and augmentation index
normalised at 75 beats min−1 in the control (Ctrl), the bilateral passive stretching (PSBil), and the unilateral passive
stretching group (PSMono) at baseline (Pre), at weeks 6 and 12, and at week 6 of follow-up. Histograms report
the percentage changes in respect to Pre for the systolic pressure, systolic blood pressure, diastolic blood pressure,
pulse pressure and augmentation index normalised at 75 beats min−1 in the control (Ctrl), the bilateral passive
stretching (PSBil), and the unilateral passive stretching group (PSMono) at weeks 6 and 12, and at week 6 of
follow-up (∗P < 0.05 vs. Pre, #P < 0.05 vs. Ctrl).

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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IEx

Figure 8 reports the IEx test results for the popliteal
and the brachial artery, respectively. Time × inter-
ventions interaction was observed in the brachial artery
the IEx% (F = 2.89, p = 0.004). In the popliteal and
the brachial artery, main effects for time were found in
IEx % (F = 3.47 and 8.90, p = 0.024 and < 0.001).
IExpop%, was significantly increased at week 12 in the PSBil,
the PSMonoSL, and the PSMonoCL group (P from 0.005
to < 0.001), before returning to baseline at follow-up.
IEx/Ẏpop was increased in all groups at week 12 (P from
0.004 to 0.003), before returning to baseline at follow-up.
Changes in IExpop% and IEx/Ẏpop were greater for the PSBil

and the PSMonoSL than for the Ctrl group at week 12 (P
from 0.003 to < 0.001).

IExbrach% was increased in the PSBil and the PSMono

group (P < 0.001 for both groups) at week 12 before
returning to baseline at follow-up. IEx/Ẏbrach was increased
in all groups at week 12 (P from 0.005 to 0.003), before
returning to baseline at follow-up. Changes in IExbrach%
and IEx/Ẏbrach were greater for the PSBil and the PSMono

than for the Ctrl group at week 12 (p = 0.003 and to 0.004,
respectively).

Correlations

Table 3 provides the correlations between the changes in
ankle and knee joint ROM and in PWA, PWA, and in the
variables calculated in sPLM, FMD and IEx tests. Inverse
correlations ranging from moderate to high were found
between ankle and knee joint ROM and the DBP, PP,
AIx75, PWVCF and PWVCR. Direct correlations spanning
from moderate to high were retrieved between ankle and
knee joint ROM and several variables in sPLM, FMD and
IEx variables.

Discussion

Improvement in blood pressure, arterial stiffness and
vascular function was noted in the arteries of the
body parts directly and not directly involved in PS
training of the lower limbs. Blood pressure was decreased,
central and peripheral arterial stiffness was reduced, and
vascular function was increased after 12 weeks of PS
training. Such changes suggest PS training-induced local
and systemic cardiovascular adjustments. Interestingly,
systemic changes, in particular in the vessels not directly

Figure 4. Pulse wave velocity
Individual data for carotid-femoral and carotid-radial pulse wave velocity in the control (Ctrl), the bilateral passive
stretching (PSBil), and the unilateral passive stretching group (stretched limb, PSMonoSL) and contralateral limb
(PSMonoCL) at baseline (Pre), at weeks 6 and 12, and at week 6 of follow-up. Histograms report the percentage
changes in respect to Pre for the carotid-femoral and carotid-radial pulse wave velocity in the control (Ctrl), the
bilateral passive stretching (PSBil), and the unilateral passive stretching group (PSMono) at weeks 6 and 12, and at
week 6 of follow-up (∗P < 0.05 vs. Pre, #P < 0.05 vs. Ctrl).

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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involved in PS training, seemed to have a shorter duration
in comparison to local adaptations, which are maintained
in the arteries directly involved in PS training even after
6 weeks from its cessation.

Preliminary considerations

After PS training, ankle and knee joint ROM was
increased in the stretched but not in the contralateral,
unstretched limb. Increased ROM with stretching is a
well-described phenomenon that is more likely the result
of a rise in stretch tolerance (reduced mechanoreceptor
and nociceptor activity during stretching) of the muscles
than a decrease in muscle/tendon stiffness or a change
in muscle architecture (Freitas et al. 2018). At follow-up
assessment 6 weeks after stretching cessation, ROM was
noted to have returned to pre-training levels. As this is the
first study to investigate the effects of chronic PS cessation
on joint ROM, no comparison with previous studies can
be made. Furthermore, our observation of no effect of

PS training on maximum isometric force of plantar flexor
and knee extensor muscles is shared by previous reports
(Medeiros & Lima, 2017).

PS training effects on blood pressure and central and
peripheral arterial stiffness

We observed positive readjustment in blood pressure and
central and peripheral arterial stiffness after PS training.
Arterial stiffness was decreased in both limbs of the
PS training groups, albeit with some time differences
between central and peripheral readjustment: PWVCF was
decreased starting at week 6 of PS training, while PWVCR

and other blood pressure parameters were reduced starting
at week 12. Several mechanical and neural adaptations
may elucidate these changes. The reduction in central
artery stiffness may be explained by the reduction in
central pressure in view of the strong two-way street
relation between the two variables. Indeed, PS training, by
inducing repetitive stimulation of transient sympathetic

Figure 5. Single passive limb movement test
Individual data for baseline blood flow, peak blood flow, and area under the curve in femoral artery in the control
(Ctrl), the bilateral passive stretching (PSBil), and the unilateral stretching group (stretched limb, PSMonoSL), and
contralateral limb (PSMonoCL) at baseline (Pre), at weeks 6 and 12, and at week 6 of follow-up. Histograms report
the percentage changes in respect to Pre for the baseline blood flow, peak blood flow, and area under the curve
in femoral artery in the control (Ctrl), the bilateral passive stretching (PSBil), and the unilateral stretching group
(stretched limb, PSMonoSL), and contralateral limb (PSMonoCL) at weeks 6 and 12, and at week 6 of follow-up
(∗P < 0.05 vs. Pre, #P < 0.05 vs. Ctrl, §P < 0.05 vs. PSMonoCL).

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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excitation (Cui et al. 2006), may have chronically reduced
the central autonomic mechanism of Q̇ control, thus
also decreasing arterial stiffness in the vessels not directly
involved in PS training and aortic blood pressure with
related parameters (PP, MAP and TTI). Moreover, the

decrease in TTI, an indirect index of myocardial oxygen
consumption (Chemla et al. 2008) may be indicative
of a reduction in afterload and, probably, in overall
cardiac work. Although the present study does not provide
direct measurement of a PS-induced reduction in the

Figure 6. Flow mediated dilatation in the popliteal artery
Individual data for baseline blood flow, baseline diameter, flow-mediated dilatation, area under the curve, and
flow-mediated dilatation/shear rate in the popliteal artery in the control (Ctrl), the bilateral passive stretching
(PSBil), the unilateral stretching group (stretched limb, PSMonoSL), and contralateral limb (PSMonoCL) at baseline
(Pre), at weeks 6 and 12, and at week 6 of follow-up. Histograms report the percentage changes in respect to Pre
for the baseline blood flow, baseline diameter, flow-mediated dilatation, area under the curve, and flow-mediated
dilatation/shear rate in the popliteal artery in the control (Ctrl), the bilateral passive stretching (PSBil), the unilateral
stretching group (stretched limb, PSMonoSL), and contralateral limb (PSMonoCL) at weeks 6 and 12, and at week 6
of follow-up (∗P < 0.05 vs. Pre, #P < 0.05 vs. Ctrl).

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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Figure 7. Flow mediated dilatation in the brachial artery
Individual data for baseline blood flow, baseline diameter, flow-mediated dilatation, area under the curve, and
flow-mediated dilatation/shear rate in the brachial artery in the control (Ctrl), the bilateral passive stretching (PSBil),
the unilateral stretching group (stretched limb, PSMonoSL), and contralateral limb (PSMonoCL) at baseline (Pre), at

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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central autonomic mechanism of Q̇ control, its possible
contribution to reducing arterial stiffness and blood
pressure cannot be ruled out. The changes in arterial
stiffness and blood pressure are partially in agreement with
previous work (Williams et al. 2013; Wong & Figueroa,
2014). Similar changes were noted in an elderly but not in
a young population (Yamamoto et al. 2009; Williams et al.
2013; Wong & Figueroa, 2014; Shinno et al. 2017). Such a
discrepancy may be attributed to PS training duration
and sample size. Previous studies had shorter training
periods and/or training sessions than our study, with
a lower total amount of stretching (Wong & Figueroa,
2014; Shinno et al. 2017). Additionally, previous studies
did not mention participant adherence to the protocol
(Williams et al. 2013; Wong & Figueroa, 2014; Shinno
et al. 2017), which in our case was set at 80% to ensure a
minimum of involvement by all participants. PS training
may have reduced arterial stiffness by inducing an increase
in elastin and collagen content in the arterial wall as a result
of sustained axial elongation of the arteries involved in
chronic stretching (Jackson et al. 2002; Nichols et al. 2011;
Marti et al. 2012). This explanation could be supported by
evidence for a further increase in vasodilatation capacity
after IEx and by the correlations between the changes in
ankle and knee joint ROM, and the changes in central
and peripheral arterial stiffness, suggesting mechanical
remodulation of the arterial wall in the vessels directly
involved in PS training (Naylor et al. 2005). Independently
from the mechanisms underlying the PS training-induced
changes in arterial stiffness and blood pressure, blood
pressure returned to baseline within 6 weeks after training
cessation, while the central and peripheral arterial stiffness
were still reduced at the end of the follow-up. The
different time course between blood pressure and arterial
stiffness after PS training cessation may suggest a different
relative weight played by the central and local (mechanical)
mechanisms underlying their decrement.

PS training-induced changes in vascular function

The present findings provide novel evidence for the
impact of PS training on vascular function, as assessed
by FMD (Harris et al. 2010) and by the more recent
sPLM methodology (Venturelli et al. 2017b). FMD is
a well-recognized means to assess vascular function
and estimate cardiovascular risk (Harris et al. 2010;
Broxterman et al. 2019). FMD response is dependent on
both reduction in sympathetic outflow towards the vessel
(Hijmering et al. 2002) and on bioavailability of local vaso-

dilatory molecules such as NO (Green, 2005; Wray et al.
2013). In contrast, sPLM response is more representative
of a microvascular assessment and closely related to local
factors (see Methods). Thus, its response seems to be
only marginally influenced by the sympathetic activity
(Venturelli et al. 2017a,b). Previous studies reported
enhanced vascular function of the stretched limb after
PS training only indirectly as measured with the reactive
hyperaemia peripheral tonometry index (Hotta et al.
2013; Kato et al. 2017; Shinno et al. 2017), a technique
mainly related to better NO bioavailability due to shear
stress-induced vasodilatation (Matsuzawa et al. 2015).
FMD results in the present study are in line with the
previously published data: indeed, an improvement in
vascular function in the arteries directly involved with
PS training was noted for both training groups under
investigation. The improvement may stem from repeated
changes in Ẏ during PS and from its effect on NO
bioavailability. PS training repeatedly exposed the vessels
to increased levels of Ẏ (Kruse et al. 2016; Venturelli
et al. 2017a, 2019), thus stimulating endothelial mechano-
transduction signalling in smooth muscle cells that results
in vasodilatation (2017, Green et al. 2017a,b). Such
repeated alterations in Ẏ over time can be considered as
a kind vascular preconditioning that may lead to increase
NO bioavailability (Green et al. 2017a; Bisconti et al. 2019).
It was demonstrated that vascular function increases
during skeletal muscle contraction because of an increase
in mean Ẏ due to elevated antegrade Ẏ (Tinken et al. 2009).
A previous study characterized the oscillatory nature
of Ẏ during elongation and relaxation cycles intrinsic
in stretching manoeuvres, and reported that a marked
hyperaemic response occurred immediately after a bout
of stretching, which coincided with elevated antegrade
and mean Ẏ and attenuated retrograde Ẏ (Kruse et al.
2016). The increment of antegrade and mean Ẏ and the
attenuation of retrograde Ẏ shown in our study during a
single PS administration further support this mechanism,
suggesting a pivotal role for Ẏ in triggering an adjustment
in vascular function after PS training. Additionally, some
studies reported that these positive effects depend on Ẏ
magnitude (Green et al. 2017a). In our study, the FMD
(%) and its relative AUC were significantly increased in
the popliteal artery of the involved limb, as well as in
the popliteal and the brachial artery of the limbs not
involved in PS training, indicating a widespread systemic
effect. Notably, the changes in vascular function in the
arteries directly involved in PS training occurred earlier
than in those not involved. Nevertheless, after 12 weeks

weeks 6 and 12, and at week 6 of follow-up. Histograms report the percentage change in respect to Pre for
the baseline blood flow, baseline diameter, flow-mediated dilatation, area under the curve, and flow-mediated
dilatation/shear rate in the brachial artery in the control (Ctrl), the bilateral passive stretching (PSBil), the unilateral
stretching group (stretched limb, PSMonoSL), and contralateral limb (PSMonoCL) at weeks 6 and 12, and at week 6
of follow-up (∗P < 0.05 vs. Pre).
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of PS training, no significant differences in FMD response
were observed between the arteries directly involved in
PS training and the contralateral arteries (non-involved),
suggesting a major contribution of the systemic/central
mechanisms in explaining the increase in FMD response.
This increase returned to baseline within 6 weeks from
PS training cessation, indicating a limited duration of the
aforementioned mechanisms.

Our study demonstrated a clear improvement in all
sPLM parameters at week 12 of PS training of the
involved and uninvolved limbs, thus reinforcing the
hypothesis for a systemic effect. As stated above, the sPLM
response relates to microvasculature reactivity induced
by increased perfusion pressure and peripheral vaso-
dilatation (Mortensen et al. 2012; Trinity et al. 2012).
Enhancement of the microvasculature, together with lower

Figure 8. Ischaemic exercise
Individual data for artery dilatation, and dilatation/shear rate after ischaemic exercise in the popliteal artery (upper
panels) and in the brachial artery (lower panels) in the control (Ctrl), the bilateral passive stretching (PSBil), the
unilateral stretching group (stretched limb, PSMonoSL), and contralateral limb (PSMonoCL) at baseline (Pre), at weeks
6 and 12, and at week 6 of follow-up. Histograms report the percentage changes in respect to Pre for the artery
dilatation, and dilatation/shear rate after ischaemic exercise in the popliteal artery (upper graphs) and in the
brachial artery (lower graphs) in the control (Ctrl), the bilateral passive stretching (PSBil), the unilateral stretching
group (stretched limb, PSMonoSL), and contralateral limb (PSMonoCL); in the brachial artery in the control (Ctrl), the
bilateral passive stretching (PSBil), the unilateral stretching group (stretched limb, PSMono) at weeks 6 and 12, and
at week 6 of follow-up.

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society
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MAP, could be ascribed to a reduction in total peripheral
vascular resistance. Of note, vessel tortuosity is closely
related to augmented peripheral vascular resistance in
large and small blood vessels and to Q̇ distribution (Poole
& Mathieu-Costello, 1989). Vessel tortuosity describes
how twisted the capillaries are and how many turns
and bends they have, on which basis a physiological
index of the capillary extension reserve is defined (Poole
& Mathieu-Costello, 1989; Poole et al. 1997). However,
changes in muscle sarcomere length significantly reduce
the capillary extension reserve (i.e. tortuosity) (Poole &
Mathieu-Costello, 1989; Poole et al. 1997). Specifically,
extensive muscle lengthening (as in PS) results in repeated
cycles of vessel elongation and compression, resulting in
a reduction of vessel resistance and capillary diameter,
as well as of Q̇ and O2 supply (Poole et al. 1997). Such
acute vessel distortion constitutes an important stimulus
for long-term vascular adaptation, induced by PS training.
While our study did not supply direct evidence for changes
in vessel tortuosity, a reduction following PS training
cannot be ruled out. In addition to these mechanisms,
a significant increase in angiogenesis was observed after
PS training (30 min day−1, 5 days week−1, for 4 weeks) in
a murine model (Hotta et al. 2018), a period far shorter
than our study protocol. Further studies are needed to
clarify the occurrence of this mechanism also in humans.
Interestingly, the change in sPLM response was higher in
the artery of the limb directly involved in PS training than
in the contralateral artery (non-involved). This difference
may underline a larger increase in vascular function in
the area where a greater shear stress stimulus occurred.
Moreover, an increased sPLM response was also observed
at follow-up, with the maintenance of greater response in
the artery of the limb directly involved compared to the
contralateral (non-involved) artery, probably suggesting
more persisting effects of the local mechanisms.

Lastly, femoral artery resting Q̇ was increased in all
training groups in the limbs directly and not directly
involved in PS training. Such a finding suggests that not
only vascular function but also muscle perfusion improved
after PS training. The correlations found in the present
study between the changes in ankle and knee ROM and
the resting Q̇ in all the three investigated arteries may
further support this possible occurrence.

Study limitations

The present study has several limitations. First, direct
assessment of muscle sympathetic nerve activity and
of NO bioavailability would have evidenced possible
stretch-induced remodulation of sympathetic vessel tone
and endothelial function, respectively. The lack of a
direct assessment of these measurements did not allow
us to establish a clear balance between central and local

mechanisms underlying the positive changes in vascular
function. Second, measurements on female participants
were always made during the early follicular phase of the
menstrual cycle, implying that tests may have occurred
with a ± 5 day-dispersion from the exact testing week.
However, in view of the strong vascular responsiveness
fluctuation induced by the menstrual cycle, we preferred
to test female participants during the same period of
the menstrual cycle. Lastly, a larger sample size may
have helped to detect possible differences in PS training
response between female and male participants.

Conclusions

The present study clearly demonstrates that 12-week PS
training is effective in improving vascular function and
decreasing stiffness of the directly involved arteries (i.e.
femoral and popliteal arteries of the stretched limbs) and
the arteries not directly involved (i.e. contralateral femoral
and popliteal arteries and brachial artery) in PS training.
These improvements encompassed both the modification
of central and local Q̇ control mechanisms. However,
the central mechanisms influencing blood pressure and
vascular function (i.e. PWA and FMD) had a shorter
duration compared to those mainly driven by local control
(i.e. sPLM), as the former returned to baseline within
6 weeks from PS training cessation, while the latter
were still present at the end of follow-up. PS has been
shown to be an effective means to improve vascular
function, with practical implications for its use as a novel
non-pharmacological treatment for improving vascular
health, reducing the overall cardiovascular risk, especially
in individuals with limited mobility.
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AV, Cé E & Esposito F (2019). Heart and musculoskeletal
hemodynamic responses to repetitive bouts of quadriceps
static stretching. J Appl Physiol japplphysiol.00823.2018.

Widlansky ME, Gokce N, Keaney JF & Vita JA (2003). The
clinical implications of endothelial dysfunction. J Am Coll
Cardiol 42, 1149–1160.

Williams AD, Ahuja KDK, Almond JB, Robertson IK & Ball MJ
(2013). Progressive resistance training might improve
vascular function in older women but not in older men. J Sci
Med Sport 16, 76–81.

Wilson C, Lee MD & McCarron JG (2016). Acetylcholine
released by endothelial cells facilitates flow-mediated
dilatation. J Physiol 594, 7267–7307.

Wong A & Figueroa A (2014). Eight weeks of stretching
training reduces aortic wave reflection magnitude and blood
pressure in obese postmenopausal women. J Hum Hypertens
28, 246–250.

Wray DW, Witman MAH, Ives SJ, McDaniel J, Trinity JD,
Conklin JD, Supiano MA & Richardson RS (2013). Does
brachial artery flow-mediated vasodilatation provide a
bioassay for NO? Hypertension 62, 345–351.

Yamamoto K, Kawano H, Gando Y, Iemitsu M, Murakami H,
Sanada K, Tanimoto M, Ohmori Y, Higuchi M, Tabata I &
Miyachi M (2009). Poor trunk flexibility is associated with
arterial stiffening. Am J Physiol Heart Circ Physiol 297,
1314–1318.

Additional information

Data availability statement

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Competing interests

The authors declare no professional relationship with companies
or manufacturers that might receive help from the results of the

C© 2020 The Authors. The Journal of Physiology C© 2020 The Physiological Society

https://doi.org/10.1186/s40064-015-1337-4
https://doi.org/10.1152/ajpheart.1997.272.5.h2107


22 A. V. Bisconti and others J Physiol 00.0

present study. The authors declare that the results of the study are
presented clearly, honestly, and without fabrication, falsification,
or inappropriate data manipulation.

Authors contributions

All experiments were conducted at the Physiology Labs of the
School of Sport Science, Università degli Studi di Milano. All
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